55,898 research outputs found

    Screened potential and the baryon spectrum

    Get PDF
    We show that in a quark model scheme the use of a screened potential, suggested by lattice QCD, instead of an infinitely rising one with the interquark distance, provides a more adequate description of the high-energy baryon spectrum. In particular an almost perfect parallelism between the predicted and observed number of states comes out throwing new light about the so-called missing resonance problem.Comment: 11 pages, 6 figures, accepted for publication in Phys. Rev.

    Renormalization group analysis of electrons near a Van Hove singularity.

    Full text link
    A model of interacting two dimensional electrons near a Van Hove singularity is studied, using renormalization group techniques. In hole doped systems, the chemical potential is found to be pinned near the singularity, when the electron-electron interactions are repulsive. The RG treatment of the leading divergences appearing in perturbation theory give rise to marginal behavior and anisotropic superconductivity.Comment: 4 Latex pages + 5 postcript figure

    Electrostatic screening in fullerene molecules

    Full text link
    The screening properties of fullerene molecules are described by means of a continuum model which uses the electronic wavefunctions of planar graphite as a starting point. The long distance behavior of the system gives rise to a renormalizable theory, which flows towards a non trivial fixed point. Its existence implies an anomalous dielectric constant. The screening properties are neither metallic nor insulating. Alternatively, the intramolecular screening is obtained from a simple approximation to the electronic wavefunctions. Intermolecular effects are also calculated. As a consistency check, it is shown that the observed polarizability of C60_{60} is well eproduced.Comment: 7 pages. Revte

    Few-anyon systems in a parabolic dot

    Full text link
    The energy levels of two and three anyons in a two-dimensional parabolic quantum dot and a perpendicular magnetic field are computed as power series in 1/|J|, where J is the angular momentum. The particles interact repulsively through a coulombic (1/r) potential. In the two-anyon problem, the reached accuracy is better than one part in 10^5. For three anyons, we study the combined effects of anyon statistics and coulomb repulsion in the ``linear'' anyonic states.Comment: LaTeX, 6 pages, 4 postscript figure

    Renormalizing Sznajd model on complex networks taking into account the effects of growth mechanisms

    Full text link
    We present a renormalization approach to solve the Sznajd opinion formation model on complex networks. For the case of two opinions, we present an expression of the probability of reaching consensus for a given opinion as a function of the initial fraction of agents with that opinion. The calculations reproduce the sharp transition of the model on a fixed network, as well as the recently observed smooth function for the model when simulated on a growing complex networks.Comment: 5 pages, 7 figure
    • …
    corecore